Assessment Schedule 2006

Calculus: Sketch graphs of conic sections and write equations related to conic sections (90639)

Evidence Statement

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	Sketch graphs of conic sections and write equations relating to conic sections.	1	Parabola: vertex (0,0) Focus (-2,0) F	A1	Vertex and focus identified. Parabolic shape. Two other points on curve to check shape eg (-2,4) and (-2,-4).	Achievement: Four of Code A including at least one of Code A1 and at least one of
Achievement		2	Circle: radius 5, centre (-4,5) Intercepts (-4,0), (0,2), (0,8) O 6 4 - 8 O 6 4 2 x	A1	Centre and intercepts identified.	Code A2. No repeated skills.
		3	Ellipse: centre (0,0) a = 4, b = 3 Intercepts (±4,0), (0,±3) Foci: (± $\sqrt{7}$,0) x = 4, b = 3 Intercepts (±4,0), (0,±3) Foci: (± $\sqrt{7}$,0)	Al	Centre, foci and intercepts identified.	
		4a	$\frac{x^2}{9} - \frac{y^2}{4} = 1$ $(x = 3\sec t, y = 2\tan t)$	A2	Or equivalent.	
		4b	$y^{2} = \frac{1}{2}(x+2)$ $\left(x = \frac{1}{8}t^{2} - 2, y = \frac{1}{4}t\right)$	A2	Or equivalent.	

Solve problems involving conic sections.	5	2x + 2y dy			
	6	$\frac{2x}{3} - \frac{2y}{8} \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{8x}{3y}$ At (3,4) $\frac{dy}{dx} = 2$ $y - 4 = 2(x - 3)$ $2x - y - 2 = 0$ Equation of ellipse: $\frac{x^2}{25} + \frac{y^2}{16} = 1$	A2 M	Or equivalent. Correct equation	Merit: Achievement plus Two of Code M or Three of
		$\frac{25}{16} + \frac{1}{16} = 1$ Focus: F(c,0) $c^2 = a^2 - b^2$ $c^2 = 25 - 16$ $c = 3$ When $c = 3, y = 3.2$	A2 M	of conic section. Or equivalent.	Code M.
	7	Centre (0, 950) Radius = 850 $x^2 + (y - 950)^2 = 850^2$ When $y = 500$, $x = -721.11$ When $y = 1500$, $x = 648.1$ Pythagoras gives:	A2	Correct equation of conic section.	
		7	When $c = 3$, $y = 3.2$ 7 Centre $(0, 950)$ Radius = 850 $x^2 + (y - 950)^2 = 850^2$ When $y = 500$, $x = -721.11$	When $c = 3$, $y = 3.2$ M Centre $(0, 950)$ Radius = 850 $x^{2} + (y - 950)^{2} = 850^{2}$ When $y = 500$, $x = -721.11$ When $y = 1500$, $x = 648.1$	When $c = 3$, $y = 3.2$ M Or equivalent. 7 Centre $(0, 950)$ Radius = 850 $x^{2} + (y - 950)^{2} = 850^{2}$ When $y = 500$, $x = -721.11$ When $y = 1500$, $x = 648.1$

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
Achievement with Excellence	Solve more complex conic section problems.	8	Equation of directrix: $x = h - a$ Length of PN: x - (h - a) = x - h + a Length of PF: $\sqrt{(x - (a + h))^2 + (y - k)^2}$ Length PN = length PF, so $(x - (h - a))^2 = (x - (a + h))^2 + (y - k)^2$ $x^2 - 2(h - a)x + (h - a)^2$ $= x^2 - 2(a + h)x + (a + h)^2 + (y - k)^2$ $4ax - 4ah = (y - k)^2$ $(y - k)^2 = 4a(x - h)$ QED.	AME	Accept any valid method. Accept minor arithmetic error.	Excellence: Merit plus Code E.

Judgement Statement

Calculus: Sketch graphs of conic sections and write equations related to conic sections (90639)

Achievement	Achievement with Merit	Achievement with Excellence
Sketch graphs of conic sections and write equations related to conic sections.	Solve problems involving conic sections.	Solve more complex conic section problems.
$4\times A$ including at least 1 \times A1 and 1 \times A2 No repeated skills	Achievement <i>plus</i> $2 \times M$	Merit <i>plus</i> 1 × E